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Abstract

We provide a Polynomial Time Approximation Scheme (PTAS) for the Bayesian optimal multi-
item multi-bidder auction problem under two conditions. First, bidders are independent, have additive
valuations and are from the same population. Second, every bidder’s value distributions of items are
independent but not necessarily identical monotone hazardrate (MHR) distributions. For non-i.i.d. bid-
ders, we also provide a PTAS when the number of bidders is small. Prior to our work, even for a single
bidder, only constant factor approximations are known.

Another appealing feature of our mechanism is the simple allocation rule. Indeed, the mechanism we
use is either the second-price auction with reserve price onevery item individually, or VCG allocation
with a few outlying items that requires additional treatments. It is surprising that such simple allocation
rules suffice to obtain nearly optimal revenue.
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1 Introduction

The multi-dimensional mechanism design problem has been widely studied in Economics, and recently in
the theory of computation community. Consider a seller who has a limited supply of several distinguishable
items and many interested bidders. The goal for the seller isto design an auction that will incentivize
the bidders to truthfully report their private valuations and maximize her revenue. Unfortunately, optimal
mechanism is not even well-defined in the worst-case analysis, as no truthful mechanism can be universally
optimal for all possible valuation profiles. Economists have taken the Bayesian approach to cope with this
impossibility, where the valuations of the bidders are assumed to be drawn from some publicly known
distributions. Given such prior distributions, the optimal mechanism is defined as the one that maximizes
the expected revenue among all (possibly randomized) truthful and individual rational mechanisms. In this
paper, the notion of truthfulness we will focus on is Bayesian incentive compatibility (BIC), while we will
also consider other notions of truthfulness such as incentive compatibility and deterministic truthfulness.
Informally, a mechanism is BIC if each bidder maximizes her expected utility by truth-telling assuming
other bidders are also truthful, where the expectation is over the randomness of the mechanisms and random
realizations of other agents’ valuations.

When there is only a single item for sale, the structure of theoptimal mechanism is very well-understood.
Myerson [18] provides an elegant solution to the optimal single-item auction problem. However, Myerson’s
result does not extend to the more generalmulti-itemsetting. Following Myerson’s work, a large body of
research in Economics has been devoted to extending his result to the multi-item setting (see survey [17]
and the references therein).

The theory of computation community has also studied this problem during the past decade, with an
eye on the computational efficiency of the mechanism. There has been lots of success in obtaining constant
factor approximations in various settings (e.g., [11, 12, 6, 1]). Lately, attention has been shifted to getting
nearly optimal revenue and such mechanisms have been proposed for several cases (e.g., [13, 8, 2]).

In a very recent paper [9], Cai et al. consider a very general setting. In their setting, bidders are additive
with arbitrary combinatorial feasibility constraints. They show how to design revenue-optimal auctions by
reducing the revenue optimization to welfare optimizationunder the same constraints. Their algorithm has
runtime polynomial in the total number of bidder types1. This is the natural description size for the problem
if we allow items to have correlated values. However, when items are independent, the natural description is
much more succinct. Making their algorithm inefficient (exponential in the input size). Moreover, to handle
such a broad setting, their solution has to be relatively complicated, which might sometimes makes it hard
to implement in reality. The above drawbacks motivate the research in this paper, that is,designing simple,
computational efficient, and nearly optimal auctions.

1.1 Main Results

In this paper, we will focus on a very important and fundamental case: Bidders have independent and
additive valuations, and items values are independent. Ourgoal is to obtain an algorithm whose runtime is
polynomial in the succinct input-size and propose much simpler revenue-optimal auctions.

More concretely, let there bem bidders2 andn heterogeneous items (unit-supply). Let there be no
feasibility constraints on the allocations. We will assumethe bidders’ valuations are additive and the values
are drawn from independent but not necessarily identical distributions subject to the standard monotone
hazard rate (MHR) assumption. Roughly speaking, MHR distributions are those whose tails are “thinner”
than exponential distributions. The formal definition of MHR is deferred to Section 2. We want to efficiently
find a mechanism whose expected revenue is optimal relative to any (possibly randomized) truthful and

1More precisely, these algorithm is polynomial in
∑

i
|Si|, whereSi is the support of the joint value distribution for bidderi.

2We will sometimes usek to denote the number of bidders when this number is an absolute constant.
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individual rational mechanism. Prior to our work, even the case of a single bidder is elusive in the presence
of many independent but not necessarily identical items.

Our main results are the following two theorems.

Theorem 1.1. Let there ben heterogeneous items,m additive bidders, and{Fj}j∈[n] be a collection of
independent but not necessarily identical MHR distributions. Suppose for each bidderi, her value for item
j is drawn independently fromFj . Then, there is a Polynomial Time Approximation Scheme3 (PTAS) for
computing the revenue-optimal truthful mechanism.

In the above theorem, we consider the case when the bidders are from the same population. So any
two bidders have the same value distributions for any particular item. This is a realistic assumption, as
to tell which demographic group the bidder is from, the seller needs to collect lots of information, e.g., her
occupation, income, marital status etc. which is usually infeasible in practice, especially when the number of
bidders is huge. When there are only a handful of bidders, however, the seller might have enough knowledge
to distinguish different bidders. We develop the followingtheorem to address this case.

Theorem 1.2. Let there ben heterogeneous items,k additive bidders (considerk as an absolute constant),
and {Fij}i∈[k],j∈[n] be a collection of independent but not necessarily identical MHR Distributions. For
any bidderi and itemj, her value for the item is drawn fromFij . There is a PTAS for computing the
revenue-optimal BIC mechanism.

Although the above theorems are stated only for BIC mechanism here, our techniques can be extended to
other solution concepts as well, such as IC and deterministic truthfulness. We will elaborate these theorems
in the corresponding sections and explain the results for various solution concepts.

Besides achieving nearly optimal revenue, our mechanisms in Theorem 1.1 and Theorem 1.2 have an
additional appealing feature of using very simple allocation rules. In fact, all of our mechanisms essentially
has one of the two following simple forms: 1) Run a second price auction with reserve price on every
item individually. 2) Use the VCG allocation with a threshold welfare whose role is similar to the reserve
price, except for a few outlying items which we need to handleseparately. It is surprising that such simple
allocation rules can actually obtain nearly optimal revenue.

1.2 Overview of Techniques

First let us explain by example why the obvious attempt of running Myerson’s auction on every item indi-
vidually fails. Consider a single bidder andn items whose values are i.i.d. and uniformly drawn from[0, 1].
On the one hand, Myerson’s optimal auction only gets1

4 revenue per item. On the other hand, ifn is large,
the total value of the grand-bundle concentrated atn

2 . So a simple grand-bundle-reserve-price auction (e.g.,
[3]) can get almostn2 revenue.

One might also argue that when the bidders’ values are additive, the overall values will be concentrated
and thus it is easy to find the optimal. But as items are non-i.i.d., we may not have such a concentration
phenomena in some cases.4

Instead, our first technical contribution is by understanding the probabilistic structure to prove the fol-
lowing structural lemma which we will use heavily:

3Recall that aPolynomial Time Approximation Scheme(PTAS) is a family of algorithms{Aǫ}ǫ, indexed by a parameterǫ > 0,
such that for every fixedǫ > 0, Aǫ runs in poly-time. In particular, for any constantǫ > 0, the PTAS constructs an auction whose
expected revenue is a(1 + ǫ) factor approximation to the optimal, in time polynomial inn andm.

4For instance, consider an item whose value is uniformly drawn from [1/2, 1] andn − 1 items whose values are i.i.d. and
uniformly drawn from[0, 1

n2 ].
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Partitioning Lemma (Informal). Assuming MHR distributions, then we can partition the itemsinto two
sets, where the first set contains only a constant number of items, and the second set has many items but the
social welfare of which highly concentrates.

Based on this lemma, we manage to reduce the problem of findingnearly-optimal mechanisms for many
independent items into two simpler sub-problems: Designing nearly-optimal mechanisms for a constant
number of independent items, and designing nearly-optimalmechanisms when the total value of the items
concentrates. The formal statement of the partition lemma and its proof will be given in Section 3.

Constant Number of Bidders In this case, designing nearly-optimal mechanisms for the sub-problem
with only a constant number of items is almost folklore and wesketch these mechanisms in Section 3.1.
In order to handle the second sub-problem, we propose a novelmechanism that falls into the VCG family,
which we shall introduce as thereserve welfare mechanismin Section 3.2. The reserve welfare mechanism
allocates items to the bidders only if the social welfare exceeds a certain reserve welfare, in which case
it will use the welfare-maximizing allocation. We show thatwith the proper pricing scheme, the reserve
welfare mechanism is deterministically truthful and solves the welfare-concentrated case nearly optimally.
The proof of Theorem 1.2 follows by combining these technical ingredients.

Many I.I.D. Bidders The key observation in this case is that when the number of bidders is sufficiently
large, simply running second price auction with a properly chosen reserve price for each item suffices to
guarantee nearly optimal revenue. More concretely, inspired by Theorem 7 in [7], we can argue that for any
constantǫ > 0, if the number of bidders is larger than an absolute constantthat only depends onǫ, then for
every item there is a second price auction with reserve pricethat achieves revenue at least a(1− ǫ) fraction
of the social welfare. In [5], Bhalgat and Khanna have independently provided similar insights when there
are sufficiently many i.i.d. bidders. On the other hand, if the number of bidders is smaller than this absolute
constant, then we can reduce the problem to Theorem 1.2.

1.3 Related Work

The theory of computation community has contributed many computational efficient solutions to various
special cases of the multi-dimensional mechanism design problem. Chawla et.al [11] consider the case
of a single unit-demand bidder, and propose an item pricing mechanism that achieves a constant factor
approximation of the optimal. Their result is based on an elegant reduction to Myerson’s optimal auction in
the single-dimensional setting. For the same problem, Cai and Daskalakis [7] propose a PTAS for optimal
item-pricing, thus close the constant approximation gap.

In the multi-bidder setting, [12, 6, 1] provide efficient constant factor approximations for cases when the
bidders are additive or unit-demand. More recently, near-optimal solutions have been obtained for several
cases. Daskalakis and Weinberg [13] solve the case where there are few bidders with symmetric5 items or
symmetric bidders with few items.

For asymmetric distributions, Cai et al. [8] give the optimal solution to the many-bidder and many-item
setting. Alaei et al. [2] consider serving many copies of an item with a matroid feasibility constraint on
which bidders can be served an item simultaneously, and obtain the optimal solution. In [9], Cai et al. pro-
vide the optimal solution for a much more general setting where bidders are additive, and with (possibly)
arbitrary feasibility constraints, by reducing the revenue optimization to welfare optimization. Their reduc-
tion provides a poly-time solution to the optimal mechanismdesign problem in all auction settings where

5See [13] for a formal definition of symmetric distributions.E.g., i.i.d. distributions is symmetric, but general independent
distributions are not.
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welfare optimization can be solved efficiently. However, itis fragile to approximation, as the reduction re-
quires an exact solution for the welfare optimization problem. In [10], the same group of authors show that
even when the welfare optimization problem is only approximately solvable, they can still carry over the
reduction while preserving the approximation factor. All of these algorithms allow correlation among items,
so the total number of bidder types is the natural input size.However, for independent but not necessarily
identical items, even when support size of every value distribution is only2 and bidders are i.i.d., the total
number of bidder types could still be as large as2n, making their algorithm highly inefficient in our setting.
Nonetheless, for symmetric items, Cai et al. [8] show how to reduce the “effective number” of types by
utilizing the symmetric structure of the items, yielding mechanisms that are polynomial in bothn andm.
But designing nearly optimal auctions for asymmetric itemsremains open prior to our work even for a single
bidder.

Our result can be viewed as an improvement of [13] and a complement to [8]. Although the results are
related, the techniques are orthogonal. The approaches in [13] and [8] are LP-based, and they use symmetry
to reduce the size of the LP. We take a different path. By understanding the probabilistic structure, we argue
that the social welfare of most of the items are highly concentrated, and can be easily extracted by the seller
using a modified VCG mechanism. Further, for the other constant number of items, as there are only a small
number of possible types, they can be easily handled by previous results (e.g., [13]).

2 Preliminaries

2.1 Model

Formally, in anmulti-item auction, a seller hasn heterogeneous items that she wants to auction tom quasi-
linear risk-neutral bidders. Each bidderi has a private valuation profilevi = (vi1, . . . , vin) ∈ R

n, wherevij
is bidderi’s value for itemj. vi is sometimes referred to as the type of the bidderi. We will assume the
valuation function to be additive, that is,vi(S) =

∑

j∈S vij for anyS ⊆ [n]. We will let v−i denote the type
profile of every bidder excepti.

A mechanismM consists of two parts: An allocation rulex(·) and a payment rulep(·).
The allocation rule x(·) maps a type profilev to a feasible allocationx(v) = {x(v)ij}i∈[m],j∈[n],

wherex(v)ij is the probability for bidderi to receive itemj when the type profile isv. For deterministic
mechanisms, we will letx(v)ij to be either0 or 1. We will let x(v)i denote then dimensional vector
(x(v)i1, . . . , x(v)in).

The payment rulemaps a type profilev to am-dimensional real vectorp(v) = (p1(v), . . . , pm(v)),
wherepi(v) is the price charged to bidderi.

Since the valuations are private information of the bidders, the mechanism needs to retrieve these infor-
mation from the bidders, who may or may not manipulate the information. We will letb = (b1, . . . , bm)
denote thebidsof the bidders. Given the bids, the allocationx(b), and the paymentsp(b), we will assume
the bidders are utility maximizers w.r.t. the standard notion ofquasi-linear utility:

ui(vi, x(b), p(b)) = vi · xi(b)− pi(b) .

We will consider theBayesian setting. Namely, we will assume that the valuationsvij , i ∈ [m] and
j ∈ [n], are drawn from some publicly known independent (but not necessarily identical) distributionsFij .
When bidders are from the same population, we will useFj to denote the value distribution for itemj, and
omit subscripti. We will let Fij(x) andfij(x) denote the cumulative distribution function and probability
density function ofFij respectively.

Next, we formally define how the distributionsFij are specified to the mechanism. We shall consider
two different models. The first one is thediscrete explicit accessmodel, where the support of eachFij
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is discrete and explicitly given, and so is the probability of each value in the support being chosen. The
second one is thecontinuous oracle accessmodel, where the support ofFij could be continuous and even
unbounded. In the latter, we will assume there is an oracle sampler such that each access to the oracle
returns a random value drawn fromFij . In the former case, the running time of our mechanisms shallbe
polynomial in the sum of the support sizes ofFij for all i ∈ [m] andj ∈ [n]. In the latter case, both the
running time and the number of accesses to the oracle of our mechanisms shall be polynomial inm andn.

2.2 Solution Concepts

We will consider the following standard game-theoretic solution concepts:

Definition 1. A deterministic mechanismM is deterministically truthful(DT), if truth-telling is a utility-
maximizing strategy, i.e.,

∀b−i : vi ∈ argmax
bi

{vi · xi(bi, b−i)− p(bi, b−i)} .

Definition 2. A randomized mechanismM is truthful-in-expectationor incentive compatible(IC) if truth-
telling maximizes the expected utility, i.e.,

∀b−i : vi ∈ argmax
bi

{E[vi · xi(bi, b−i)− p(bi, b−i)]} .

where expectation is over random coin-flips of the mechanism.

Definition 3. A (randomized) mechanismM is Bayesian-incentive-compatible(BIC) if truth-telling maxi-
mizes the expected utility, i.e.,

∀b−i : vi ∈ argmax
bi

{ E
b−i∼F−i

[vi · xi(bi, b−i)− p(bi, b−i)]} ,

where expectation is over random coin-flips of the mechanismand random realization of the valuations of
other bidders.

We will also consider the following relaxed notions of deterministic truthfulness.

Definition 4. A deterministic mechanismM is ǫ-deterministically truthful(ǫ-DT), if

∀bi, b−i : vi · xi(bi, b−i)− p(bi, b−i) ≤ vi · xi(vi, b−i)− p(vi, b−i) + ǫ .

The notions ofǫ-IC andǫ-BIC are defined similarly.

Further, it is very important not to overcharge the bidders,especially when we are aiming for revenue.

Definition 5. A mechanismM is individually rational (IR) if the utility of any bidder in any outcome is
always non-negative, i.e.,

∀b−i : vi · xi(vi, b−i)− p(vi, b−i) ≥ 0 .

The following taxation principleis a well known characterization for truthful mechanisms (e.g., see
[14, 16]) which will be useful for our discussion.

Theorem 2.1(Taxation Principle). A mechanism is DT/IC if and only if each bidderi is presented a menu
of bundles/lotteries of items such that the prices of the bundles/lotteries only depends on the other bidders’
valuationsv−i, and bidderi always gets one of the utility maximizing bundles/lotteries.

In particular, if there is only one bidder, then such menus are fixed regardless of the reported value. So
any DT/IC mechanism can be viewed as a bundle-pricing/lottery-pricing of the items.

5



2.3 Extreme Value Theorem

Throughout this paper, we will consider distributions thathavemonotone hazard rate(MHR):

Definition 6. A distributionF hasmonotone hazard rateif f(x)
1−F (x) is non-decreasing in the support ofF .

The MHR distributions is a commonly studied family of distributions in Economics and recently in the
algorithmic game theory community. It includes familiar distributions such as the Normal, Exponential, and
Uniform distributions. Intuitively, a distribution has monotone hazard rate if its tail is at most as large as
that of an Exponential distribution. We note that in our results the MHR assumption can be replaced by the
following assumption: There exists a constantC such that the for each bidderi and itemj the support of
Fij is an interval whose upper and lower bounds differs by at mostaC multiplicative factor. In other words,
our algorithms work well as long as we have a rough idea on eachbidderi’s value on each itemj. In fact,
this is the alternative assumption we will use for the discrete explicit access model.

We will use the followingextreme value theoremfor MHR distributions developed in [7] as an important
technical tool in our proofs. Readers are referred to [7] forthe proof of the theorem.

Theorem 2.2(Extreme Value Theorem [7]). SupposeX1, . . . ,Xn are a collection of independent (but not
necessarily identically distributed) random variables whose distributions are MHR, andfmaxi{Xi} is the
probability density function of the random variablemaxi Xi. Then, for allǫ ∈ (0, 14), there exists some

anchoring pointβ such thatPr[maxiXi ≥
β
2 ] ≥ 1− 1√

e
and

∫ +∞

2β log( 1
ǫ
)
t · fmaxi{Xi}(t)dt ≤ 36βǫ log

(

1

ǫ

)

.

Moreover,β is efficiently computable from the distributions of theXi’s.

Based on the above extreme value theorem and an additional probabilistic argument, we will show in
Section 3 that the social welfare of some carefully chosen subset of items highly concentrates. In particular,
we will consider the followings notion of concentration.

Definition 7. A random variableX is (ǫ, δ)-concentratedif X ∈ (1 − ǫ, 1 + ǫ)E[X] with probability at
least1− δ.

3 Nearly Optimal Mechanism for Constant Number of Bidders

In this section, we will consider the case when there are onlyk bidders, wherek is an absolute constant.6 We
will prove that for various solution concepts, the problem of finding revenue-optimal truthful mechanisms
can be solved under a unified framework. Formally, our results can be summarized as the following theorem.

6We note that our mechanisms can be extended to the case ofO(logc n) bidders for sufficiently small constantc via almost
identical proofs, wherec depends on the solution concept. However, we feel such extension is not very insightful. So we will only
present the case for a constant number of bidders in this extended abstract for the sake of presentation.
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Theorem 3.1(Thm. 1.2 elaborated). Suppose the number of bidders is a constant. Then, there is a PTAS
(polynomial inn) for finding revenue-optimal mechanisms among (all settings require IR):

• IC/BIC mechanisms with discrete explicit access.

• DT mechanisms with discrete explicit access.1

• DT/IC mechanisms with continuous oracle access for a singlebidder.

• BIC mechanisms with continuous oracle access.

• DT/IC mechanisms with continuous oracle access.1

1 Our mechanisms in these cases are onlyǫ-deterministically truthful andǫ-IC.

The general proof strategy of Theorem 3.1 is to reduce the problem of designing almost optimal mech-
anisms for the multi-item auction problem into two easier sub-problems (assuming MHR distributions).
More precisely, we will prove that if there are PTAS for the special cases in the next two lemmas, then it is
possible to combine the nearly optimal mechanisms for thesetwo cases to derive the PTAS in Theorem 3.1.

Lemma 3.2(Few-Item Case). Theorem 3.1 holds if both the number of items and the number ofbidders are
constants.

Lemma 3.3(Concentrated Case). Suppose the optimal social welfare is(ǫ, δ)-concentrated, and the number
of bidders is a constant. Then, there is a polynomial-time and deterministically truthful mechanism whose
expected revenue is at least(1− f(ǫ, δ)) fraction of the expected optimal social welfare, wheref(ǫ, δ) goes
to zero asǫ andδ goes to zero.

At this point, we will focus on how to combine the mechanisms obtained from the above lemmas to
derive the proof of Theorem 3.1. The proofs of Lemma 3.2 and Lemma 3.3 are deferred to Section 3.1 and
Section 3.2 respectively.

Proof Outline of Theorem 3.1 Before getting into the technical details, let us first sketch the road-map
of our proof. First of all, we notice that under the MHR assumption, it is easy to achieve expected revenue
that is at least a constant fraction of the expected social welfare. This follows easily from previous work
(e.g. see [4]) and we will formally state it as Lemma 3.4. By this result, we know that we can throw away
items whose contribution to the expected social welfare is tiny without overhurting the optimal revenue.
Next, we proceeds by proving a structural result saying thatwe can partition the items into three groups:
a small group of items with large variance, which we shall handle with the mechanism from Lemma 3.2
(Section 3.1);7 a group of items whose contribution to the social welfare concentrates, which we will handle
with the mechanism from Lemma 3.3 (Section 3.2); and finally agroup of items whose total contributions
to the expected social welfare is tiny, which we will simply ignore (never allocate them to any bidder). This
result is formally stated and proved in Lemma 3.5. At last, inorder to show this approach is a PTAS for the
multi-item auction problem, we need to show that the optimalrevenue of the problem is upper bounded by
the optimal revenue when only a subset of items present (the items with large variance) plus the expected
social welfare of the remaining items (the concentrated group of items). Indeed, we will prove this claim as
Lemma 3.6. The complete proof of Theorem 3.1 is given in Appendix A.

7The philosophy of selecting a few distinguished items to reduce the size of the problem and solve it nearly optimally may
looks similar to that of thek-lookahead auction (e.g. see [19, 15]), where we choose a fewdistinguished bidders and design nearly
optimal mechanism for them (based on the bids of the other bidders). However, there are a few crucial differences. First,in our
approach the small set of items are chosen without knowing the bids while in thek-lookahead auction the set of bidders are chosen
based on the bids. Further, in our approach we also derive good revenue from the rest of the items while thek-lookahead auction
never derive revenue directly from the rest of the bidders. Finally, as a result of the previous point, our approach admits nearly
optimal revenue while thek-lookahead auction only guarantees constant-factor approximation so far.
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Next, let us formally state and prove the technical lemmas mentioned in the proof sketch. The following
lemma is folklore from previous work.

Lemma 3.4(E.g., Corollary 3.7 of [6]). For any multi-item auction with MHR bidders, the optimal expected
revenue is at least a constant fraction of the expected social welfare.

Now let us consider the partition lemma. For presentation purpose, we will only show a weaker version
of the partition lemma, under the additional assumption that the upper and lower bounds of the value range
of Xj = maxi vij only differ by at most a constant factorc for every itemj. Note that Lemma 2.2 implies
that at least1−O(ǫ log 1

ǫ ) fraction of the contribution toE[Xj ] comes from a range whose upper and lower
bounds differ by at most anO(1ǫ log(

1
ǫ )) factor. It is easy to see that by choosingc = Θ(1ǫ log(

1
ǫ )) and

taking into account the fact that the contribution outside the range is tiny, we can prove the partition lemma
without the additional assumption. We omit the details here.

Lemma 3.5. SupposeX1, . . . ,Xn aren non-negative independent random variables, where[αj , βj ] is the

range ofXj , 1 ≤ j ≤ n, such thatc = maxj
βj

αj
is a constant. Supposeǫ > 0 and 1

8 > δ > 0 are small
constants. Then, we can partitionX1, . . . ,Xn into three groupsR, S, andT in polynomial time, such that:

1. The size ofR is small: |R| ≤ 16c2

ǫ3
ln

(

2
δ

)

.

2. The sum inS,
∑

Xj∈S Xj , is (ǫ, δ)-concentrated.

3. The contribution from groupT is tiny:
∑

Xj∈T E[Xj ] ≤ ǫ
∑n

j=1E[Xj ].

Proof. Let s =
∑n

j=1E[Xj ] be the sum of the expectation of these random variables. Notethats can be
estimated up to a constant factor in polynomial time and suchestimated value is sufficient for our purpose.
For the sake of presentation, we will assume that we known thevalue ofs.

We will first partition the random variables intoΘ(log n) bucketsB1, B2, . . . , Blogn+log( 2
ǫ
) according

to their expectations. IfE[Xj ] ∈ [ s
2ℓ
, s
2ℓ−1 ] for 1 ≤ ℓ ≤ log n + log(2ǫ ), then we putXj into bucketBℓ. If

E[Xj ] ≤
ǫs
2n , then its contribution to the social welfare is negligible and we will putXj into T .

Briefly speaking, we will proceed as follows. First pick a small threshold indexℓ∗ (the value ofℓ∗ will
be defined later); then for each bucketBℓ such thatℓ ≤ ℓ∗, we put all random variables inBℓ into R; for
each bucketBℓ such thatℓ > ℓ∗, we will show that either

∑

Xj∈Bℓ
Xj concentrates with high probability,

or the contribution of
∑

Xj∈Bℓ
E[Xj ] is tiny. In the former case, we will put the variables inBℓ into S; in

the latter case, we will put the variables inBℓ into T .
More precisely, for each bucketBℓ whereℓ > ℓ∗, if |Bℓ| ≥

2c2

ǫ2 (ln(
2
δ ) + ℓ − ℓ∗), we will put these

random variables intoS. Note that for everyXj ∈ Bℓ, we have thatβj ≤ cαj ≤ cE[Xj ] ≤
c·s
2ℓ−1 and

E[Xj ] ≥
s
2ℓ

. By Chernoff-Höeffding bound, we get that

Pr





∣

∣

∣

∣

∣

∣

∑

Xj∈Bℓ

Xj −
∑

Xj∈Bℓ

E[Xj ]

∣

∣

∣

∣

∣

∣

> ǫ
∑

Xj∈Bℓ

E[Xj ]



 ≤ 2 exp

(

− ln

(

2

δ

)

− ℓ+ ℓ∗
)

= δ exp(−ℓ+ ℓ∗) .

Now consider all the buckets that we put intoS. By union bound, the probability that the sum of the
random variables in any of these buckets does not concentrate is at most

∑

ℓ>ℓ∗ δ exp(−ℓ+ ℓ∗) < δ. Thus,
we have proved thatS satisfies the desired property in the lemma.

If |Bℓ| <
2c∗

ǫ2
(ln(2δ )+ℓ−ℓ∗), we shall put all variables inBℓ intoT . In this case, we have

∑

Xj∈Bℓ
E[Xj ] ≤

s
2ℓ−1

2c2

ǫ2

(

ln
(

2
δ

)

+ ℓ− ℓ∗
)

. Therefore, the sum of the expected values of the random variables inT is at most

∑

ℓ>ℓ∗

s

2ℓ−1

2c2

ǫ2

(

ln

(

2

δ

)

+ ℓ− ℓ∗
)

+
∑

Xj :E[Xj ]≤ ǫs
2n

ǫs

2n
≤

∑

ℓ>ℓ∗

s

2ℓ−1

2c2

ǫ2
ln

(

2

δ

)

+
∑

ℓ>ℓ∗

s

2ℓ−1

2c2

ǫ2
(ℓ− ℓ∗) +

ǫs

2

=
s

2ℓ∗−1

2c2

ǫ2
ln

(

2

δ

)

+
s

2ℓ∗−2

2c2

ǫ2
+

ǫs

2
.
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In order to guarantee that
∑

Xj∈T E[Xj ] ≤ ǫs, it suffices to chooseℓ∗ such that

1

2ℓ∗−1

2c2

ǫ2
ln

(

2

δ

)

+
1

2ℓ∗−2

2c2

ǫ2
≤

ǫ

2
.

Note thatδ < 1
2e2

implies that

1

2ℓ∗−1

2c2

ǫ2
ln

(

2

δ

)

+
1

2ℓ∗−2

2c2

ǫ2
≤

1

2ℓ∗−2

2c2

ǫ2
ln

(

2

δ

)

.

We shall letℓ∗ = log
(

16c2

ǫ3
ln

(

2
δ

)

)

and conclude thatT satisfies the claimed property.

Finally, we note that for anyXj ∈ R, we haveE[Xj ] ≥
s

2ℓ∗
. So by

∑

Xj∈R E[Xj ] ≤ s we get that the

size ofR is at most2ℓ
∗
= 16c2

ǫ3
ln

(

2
δ

)

.

At last, we will show that by decomposing the problem into twosub-problems we do not hurt the optimal
revenue by too much. Concretely, for anyS ⊆ [n], we letoptDT(S), optIC(S), andoptBIC(S) denote the
optimal revenue by deterministically truthful/IC/BIC mechanisms respectively when only the items inS are
available on the market (value distributions are the same).We have

Lemma 3.6. For anyS ⊆ [n], we have

opt
truthful([n]) ≤ opt

truthful(S) +
∑

j /∈S
E[max

i
vij] ,

where truthful can be instantiated with deterministicallytruthful (DT), or IC, or BIC.

Proof. SupposeM is the truthful (under the instantiated solution concept) mechanism that achieves optimal
revenue. Let us construct a truthful mechanismMS for the market when only the items inS is presented.
The revenue of the mechanism shall be at leastopttruthful([n])−

∑

j /∈S E[maxi vij ]:

1. Let bidders submit their bidsb1,S , . . . , bk,S .

2. Sample valuesv1,−S ∼ F1,−S , . . . ,vk,−S ∼ Fk,−S for items not inS.

3. RunM on bids(b1,S ,v1,−S), . . . , (bk,S ,vk,−S). LetS andp denote the allocation and prices.

4. Give bidderi the items inSi ∩ S and charge herpi −
∑

j∈Si\S vij.

First, let us analyze the revenue achieved byMS assuming the bidders bid truthfully:bi,S = vi,S for

1 ≤ i ≤ k. The revenue byMS is
∑k

i=1E

[

pi −
∑

j∈Si\S vij

]

. By linerity of expectation, this can be

divided into two parts:
∑k

i=1 E[pi] −
∑k

i=1E[
∑

j∈Sj\S vij ]. The first part
∑k

i=1 E[pi] is the expected

revenueopttruthful([n]) achieved byM The second part
∑k

i=1E

[

∑

j∈Si\S vij

]

is social welfare from items

outsideS, which is upper bounded by the optimal social welfare . Note that the latter part is upper bounded
by the

∑

j /∈S E [maxi vij ]. Therefore, the revenue byMS is at least

opttruthful([n])−
∑

j /∈S E [maxi vij ] .

Now let us explain why mechanismMS is indeed truthful with respect to the corresponding solution
concepts. Note that bidderi’s utility is

∑

j∈Si∩S
vij − (pi −

∑

j∈Si\S
vij) =

∑

j∈Si

vij − pi ,

which is exactly the utility of a virtual bidder whose valuesarevi and bids(bi,S ,vi,−S). So ifM is IC/BIC,
thenMS is also IC/BIC. Finally, ifM is a deterministically truthful mechanism thenMS is uniformly
truthful. We further note that there is no performance gap between optimal uniformly truthful mechanisms
and optimal deterministically truthful mechanisms in the Bayesian setting. So Lemma 3.6 follows.
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3.1 Nearly Optimal Mechanism for Constant Number of Items and bidders

The mechanisms for constant number of items and constant number of bidders mostly follow directly from
previous work. The general approach is to brute-force search with the hope that the search space would be
small since both the number of items and the number of biddersare small. However, the strategy spaces for
mechanism design problems are typically infinite. Hence, appropriate discretization is needed in order to
reduce the size of the search space. We will briefly describe these mechanisms and thus prove Lemma 3.2
in the Appendix B for self-containness.

3.2 Nearly Optimal Mechanism When Social Welfare Concentrates

In this section, we will prove Lemma 3.3 by demonstrating howto design nearly optimal mechanisms, when
the social welfare concentrates near its expectation as thebidders’ values are drawn from the corresponding
distributions.

3.2.1 Single-Bidder Case

As a warm-up, let us first consider the single-bidder case. This case is quite straight-forward. We note that
agrand-bundle-reserve-price auction(e.g. see Armstrong [3]) shall suffice. More precisely, the auction will
offer the bidder the grand bundle with a take-it-or-leave-it price

r∗ = (1− ǫ)E[
∑

j

vj] .

If the bidder values the grand bundle abover∗, she will take the grand bundle and payr∗; no item is
allocated otherwise and the bidder pays nothing. The proof of the next theorem follows straightforwardly
from the definition of the mechanism and(ǫ, δ)-concentrated. So we will omit the tedious details.

Theorem 3.7. The grand-bundle-reserve-price auction is deterministically truthful, individually rational,
and its expected revenue is at least(1− ǫ)(1− δ)E[

∑

j vj] if the social welfare is(ǫ, δ)-concentrated.

3.2.2 Constant Number of Bidders

Now we show a similar result for multiple bidders. As a natural first attempt, it might be tempting to think
there exists areserve-revenue mechanismwith reserve revenuer∗ = (1 − ǫ)E[

∑

j maxi vij] such that the
mechanism offers the grand-bundle to all the bidders at a reserve pricer∗ and let the bidders discuss and
decide whether to accept this offer and how to share the itemsand the costs if they decide to accept. Of
course, the last step in the above procedure is not well-defined. The hope is that there is a truthful way for
the bidders to come to a consensus of accepting the offer whenever the optimal social welfare is greater
thanr∗, since in such cases the bidders as a whole has positive surplus when buying the grand-bundle at
the reserve pricer∗. It is easy to see that this mechanism (if implementable) achieves a revenue of at least
(1− ǫ)(1 − δ)E[

∑

j maxi vij]. Unfortunately, we show that such mechanisms cannot be implemented in a
truthful and IR manner. We will defer the discussion of this impossibility result to Appendix F.

Reserve-Welfare Mechanism In order to handle the multiple-bidder case, we will proposea novel mech-
anism in the VCG-family, which we shall refer to as thereserve-welfare mechanism. The idea is the fol-
lowing: it might be too aggressive to ask for a certain reserve revenue whenever the social welfare is above
this reserve revenue; but it suffices to aim for the weaker goal of getting good revenue only when the social
welfare is closed to its expectation because the social welfare concentrates by our assumption. Concretely,
thereserve-welfare mechanismis defined in Figure 1.
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1. Let ŝ = (1− ǫ)E
[

∑

j maxi vij

]

be the reserve welfare.

2. If the optimal social welfare according to the bids,
∑

j maxi bij , is smaller the reserve
welfareŝ, then no item is allocated and the bidders pays nothing.

3. Otherwise, allocate items according to an allocationS = (S1, . . . , Sk) that maximizes the
social welfare.

4. Charge bidderi pricepi = ŝ−
∑

ℓ 6=i

∑

j∈Sℓ
bℓj .

Figure 1: The reserve-welfare mechanism

Notice whenk = 1, this mechanism indeed becomes the grand-bundle-reserve-price auction. So the
reserve-welfare mechanism can be viewed as a generalization of the grand-bundle-reserve-price auction.
We shall prove that this mechanism satisfies the desired properties.

Theorem 3.8. The reserve-welfare mechanism is deterministically truthful, individually rational, and its
expected revenue is at least(1 − kǫ − kδ)E[

∑

j maxi vij] if the social welfare is(ǫ, δ)-concentrated for

constants13 > ǫ > 0 and1 > δ > 0.

Briefly speaking, the proof goes as follows. By our definitionof the payments, each bidder pays almost
up to her value on the subset she gets when if social welfare isnear the reserve welfarês. Further, the social
welfare will be near the reserve welfareŝ almost for sure by our choice of̂s and that the social welfare is
(ǫ, δ)-concentrated. The only catch is the prices in the reserve-welfare mechanism might be negative when
the values of the bidders are very large. We manage to show that the contribution of the negative prices
can be bounded as well. So the expected revenue almost matches the expected social welfare. Below let us
present the formal argument.

Proof. (Theorem 3.8)If we omit step 2 and always allocate items according to the social-welfare-maximizing
allocation, then the mechanism falls into the VCG family except that we are using the reserve welfareŝ as
our pivot instead of the Clarke pivot. So this variance of thereserve-welfare mechanism is deterministi-
cally truthful. Yet it is not individually rational. The reason of doing step 2 is exactly to fix the individual
rationality.

Formally, for each bidderi, suppose her true valuations arevi and she bidsbi. If reportingvi the items
will not be allocated, then she should not lie and get the items allocated, since in the former case, her utility
is 0, while in the latter case her utility is negative. Now assuming the items are allocated, her utility is

∑

j∈Si

vij − pi =
∑

j∈Si

vij +
∑

ℓ 6=i

∑

j∈Sk

bℓj − ŝ .

Note that the mechanism chooses the allocation that maximizes
∑

i

∑

j∈Si
bij . So by reporting her value

truthfully the bidder maximizes her utility. Thus, the mechanism is deterministically truthful. Moreover,
step 2 guarantees that allocation will be made only if

∑

i

∑

j∈Si
bij ≥ ŝ. Therefore, the mechanism is

individually rational.
Finally, let us analyze the revenue achieved by the reserve-welfare mechanism. We will let

s∗ = E

[

∑

j maxi vij

]
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denote the optimal expected social welfare, and recall thatŝ = (1−ǫ)s∗ is the reserve welfare. Assuming the
bidders bid truthfully, the revenue is zero if the social welfare is less than̂s, and is the following otherwise:

∑

i

pi =
∑

i



ŝ−
∑

ℓ 6=i

∑

j∈Sℓ

vℓj





= kŝ−
∑

ℓ

∑

j∈Sℓ

(k − 1)vℓj

= kŝ− (k − 1)
∑

j∈[n]
max

ℓ
vℓj .

By our assumption that the social welfare is(ǫ, δ)-concentrated, the expected revenue is at least

(1− δ)(1 − ǫ)ks∗ − (1− δ)(k − 1) ·E





∑

j∈[n]
max

ℓ
vℓj |

∑

j∈[n]
max

ℓ
vℓj ≥ ŝ



 . (1)

Note that

s∗ ≥ Pr





∑

j∈[n]
max

ℓ
vℓj ≥ ŝ



E





∑

j∈[n]
max

ℓ
vℓj |

∑

j∈[n]
max

ℓ
vℓj ≥ ŝ





≥ (1− δ)E





∑

j

max
ℓ

vℓj |
∑

j

max
ℓ

vℓj ≥ ŝ



 . (2)

Combining (1) and (2) we get that the expected revenue of the reserve-welfare mechanism is at least

(1− δ)(1 − ǫ)ks∗ − (k − 1)s∗ ≥ (1− kδ − kǫ)s∗ .

This proves the desired revenue guarantee.

Since the number of bidders is an absolute constant, Theorem3.8 implies Lemma 3.3.

4 Many Bidders From the Same Population

As a natural restriction of the general multi-item auction probelm, we will consider multi-item auctions
with arbitrary number of items and bidders under the assumption that they are from the same population.
Formally, for every itemj, the value distributionsFij are identical for every bidderi. In this case, we
manage to design nearly-optimal mechanisms based on our results for the few-bidder case.

Theorem 4.1 (Thm. 1.1 elaborated). Suppose the bidders are from the same population, then thereis a
PTAS (polynomial in bothn andm) for finding revenue-optimal mechanisms among (all settings require the
mechanism to be IR):

• IC/BIC mechanisms with discrete explicit access.

• DT mechanisms with discrete explicit access.1

• BIC mechanisms with continuous oracle access.

• DT/IC mechanisms with continuous oracle access.1

1 Our mechanisms in these cases are onlyǫ-deterministically truthful andǫ-IC.
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We will need the following lemma for i.i.d. MHR distributions following Theorem 7 in Cai and Daskalakis
[7] and the proof therein.

Lemma 4.2. Supposev1, . . . , vk are i.i.d. according to a MHR distribution, andk ≥ (12/ǫ)12/ǫ. Then there
is a thresholdr∗ such that

Pr

[

max
i

vi ≥ r∗
]

· r∗ ≥ (1− ǫ)E

[

max
i

vi

]

.

Moreover, one can efficiently find such a thresholdr∗ in polynomial time.

Roughly speaking, Cai and Daskalakis managed to improve their extreme value theorem when the bid-
ders are i.i.d. so that consider the expectation of the random variablemaxi vi, we only need to focus on the
contribution from a small interval whose upper and lower bounds only differ by a(1+ ǫ) factor. As a simple
corollary of this stronger extreme value theorem, we have the above lemma.

Equipped with this lemma, we are now ready to solve the case ofarbitrary number of i.i.d. bidders.

Proof. (Theorem 4.1)Note that for each itemj, the bidders’ valuations for this itemv1j , . . . , vkj are
i.i.d. random variable according to a MHR distribution. Therefore, if the number of biddersk is greater
than(12/ǫ)12/ǫ, then by Lemma 4.2, we can find in polynomial time a thresholdr∗j for each itemj such that

Pr[maxi vij ≥ r∗j ] · r
∗
j ≥ (1− ǫ)E[maxi vij] .

Therefore, if we run the second price auction with reserve pricesr∗j for each itemj, then the expected
revenue is at least

∑

j Pr[maxi vij ≥ r∗j ] · r
∗
j ≥ (1− ǫ)

∑

j E[maxi vij ] .

Note that the right-hand-side of the above inequality is theoptimal expected social welfare and therefore
is an upper bound on the optimal revenue. So in the case when there are at least(12/ǫ)12/ǫ bidders, a simple
reserve-price auction suffices to obtain a(1 − ǫ) fraction of the optimal revenue. Note that this mechanism
is deterministic truthful and thus satisfies all our definitions of truthfulness.

So it suffices to solve the case when the number of bidders are smaller than(12/ǫ)12/ǫ. But this falls into
the case of constant number of bidders for any constantǫ > 0. So we could use the mechanism in Theorem
1.2 to solve the few-bidder case. In sum, we have proved the theorem.
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A Omitted Proofs in Section 3

Proof. (Theorem 3.1)First, we will use Lemma 2.2 to truncate the random variablesXj = maxi vij and
getX̂j , so that everyX̂j lies in an interval where upper bound and lower bound are only

(

1
ǫ log(

1
ǫ )
)

factor
away andE[X̂i] ≥

(

1−O(ǫ log(1ǫ ))
)

E[Xi].
By Lemma 3.5, we partition[n] into three setsR, S andT using the sameǫ. Let S1, S2 andS3 be the

sets of items whose max value are inR, S andT , respectively. Then, the size ofS1 is a constant that only
depends onǫ and the following its true.

∑

j∈S3

E[max
i

vij ] ≤

∑

X̂i∈T E[X̂i]

1−O
(

ǫ log(1ǫ )
)

≤
ǫ
∑n

i=1E[Xi]

1−O
(

ǫ log(1ǫ )
)

≤
O(ǫ)opt([n])

1−O
(

ǫ log(1ǫ )
) , (3)
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where the last inequality follows from Lemma 3.4.
LetM1 andM2 be the(1− ǫ)-approximate mechanisms from Lemma 3.2 and Lemma 3.3 respectively.

Consider the following mechanismM for [n]:

1. Let the bidders submit their bidsb1,[n], . . . , bk,[n].

2. RunM1 on bidsb1,S1
, b2,S1

, . . . , bk,S1
andM2 on bidsb1,S2

, b2,S2
, . . . , bk,S2

.

3. LetS′, p′ andS′′, p′′ be the corresponding allocation and prices forM1 andM2, give items inS′
i∪S

′′
i

to bidderi, and charge himp′i + p′′i .

LetR(N) be the revenue for mechanismN , thenR(M) = R(M1)+R(M2). By Lemma 3.6, we know

opt([n]) ≤ opt(S1) + max
j∈S2

E[max
i

vij ] + max
j∈S3

E[max
i

vij ] .

First of all, the contribution of the last term is small according to (3). So it suffices to obtain revenue
close toopt(S1) + maxj∈S2

E [maxi vij ]. Further, we know thatR(M1) ≥ (1 − ǫ)opt(S1) andR(M2) ≥
(1− ǫ)

∑

j /∈S2
E[maxi vij ]. Therefore, we haveR(M) ≥ (1−O(ǫ))opt([n]).

Finally, the truthfulness (with respect to the corresponding solution concept) ofM follows straightfor-
wardly from the truthfulness ofM1 andM2. So we have proved the theorem.

B Nearly Optimal Mechanism for Constant Number of Items and Bidders

B.1 Discrete Explicit Access Model

In this setting, the problem of optimal mechanism design forrevenue among IC and IR mechanisms or
among BIC and IR mechanisms can be written as polynomial-size linear programs (each bidder might have
many different values for an item). Therefore, we can efficiently find the optimal mechanism in these two
settings. Since the LPs we used are very standard (e.g. see [4]), we will defer the discussion of these LPs to
Appendix C.

For the problem of optimal mechanism design among deterministically truthful mechanisms, however,
we need to solve the integer program version of the LP of optimal IC mechanisms. In order to do so, we need
to reduce the size of the integer program from polynomial to constant. We will take the standard approach of
rounding down each bidder’s value to the nearest multiple ofǫ. As a result, for each bidder-item pair we only
need to consider a constant number of possible valuations. Recall there are only a constant number of items
and bidders, we can solve the constant-size integer programfor this coarsened support set efficiently. As a
result of the coarsening, however, we only getǫ-deterministically truthful instead of perfect truthfulness.

B.2 Continuous Oracle Access Model

B.2.1 DT Mechanism for a Single Bidder

By the taxation principle, any deterministically truthfulmechanism can be interpreted as a bundle-pricing
mechanism: the bidder is given a menu of bundles of items suchthat the prices of the bundles are inde-
pendent on the reported values; moreover, the bidder alwaysgets one of the utility-maximizing bundles.
In other words, it suffices to find the nearly optimal bundle prices. In order to do so, we first show that in
order to obtain nearly optimal revenue it suffice to considera finite number of prices for each bundle via a
standard price discretization lemma attributed to Nisan (e.g. see [11]). Then, we can search over all possible
bundle-pricings within the discretized price set and choose the optimal one. Since there are only constant
number of items and thus constant number of bundles, such brute-force search can be done efficiently. For
completeness we include a formal statement and the proof of the price discretization lemma in Appendix D.
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B.2.2 IC Mechanism for a Single Bidder

In this case, our starting point is again the taxation principle. Any IC mechanism can be interpreted as a
lottery-pricing mechanism: the bidder is given a (not necessarily finite) menu of lotteries, each of which
is represented by a vector of the probabilities of getting each item, such that the prices of the lotteries are
independent on the reported values; moreover, the bidder always gets the utility maximizing lottery. By
the same price discretization lemma, we only need to consider a finite number of prices for each lottery.
However, there is an infinite number of possible lotteries. We settle this problem by showing the lottery
space can be discretized as well. Concretely, we prove that in order to obtain1−O(ǫ) of the optimal revenue,
it suffices to consider lotteries in which the probabilitiesof getting each item are powers of(1 + ǫ2) and are
greater thanǫ2. As a result, we can combine the lottery discretization lemma and the pricing discretization
lemma to show that in order to get nearly optimal lottery pricing it suffices to search over constant number
of lottery-pricing mechanisms and choose the best one. The proof of the lottery discretization lemma is
deferred to Appendix E.

B.2.3 DT/IC/BIC Mechanisms for Multiple Bidders

In order to solve the problem for multiple bidders, we use a reduction to the discrete case: discretize the prior
distributions by rounding each sampled value to the closestpowers of(1+ǫ) and truncate values that are too
large or too small according to the extreme value theorem in [7]. We then find the nearly optimal mechanism
for the coarsened problem via the integer programing/linear programming approach for the discrete case.
Finally, we will round the bids of the bidders to the closest powers of(1+ǫ), run the above mechanism on the
coarsened bids, and use the allocation and prices chosen by the mechanism. As a result of the rounding, the
mechanisms we obtain are onlyǫ-truthful with respect to the corresponding solution concepts. Nonetheless,
in the BIC case, we can use the technique recently developed by Daskalakis and Weinberg [13] to convert
our ǫ-BIC mechanism into a BIC one with only a small additional loss in the expected revenue.

C Linear Programs for Multi-Item Auctions

It has long been known that if the support set is finite, then the problem of designing truthful (IC/BIC)
mechanism that achieves optimal revenue can be characterized by a linear problem. For completeness, we
will describe the standard linear programs for the multi-item auction.

For any type profilev, any bidderi, and any itemj, we letx(v)ij denote the probability that bidderi
gets itemj when the valuations arev, and letp(v)i denote the expected payment of bidderi. The problem
of optimal multi-item auction among IC mechanisms has the following exact LP characterization:

Maximize
∑

v

Pr[v]
k

∑

i=1

p(v)i s.t.

∀j,v :

k
∑

i=1

x(v)ij ≤ 1

∀i,v, v′i :
n
∑

j=1

x(v)ijvij − p(v)i ≥
n
∑

j=1

x(v′i, v−i)ijvij − p(v′i, v−i)i

∀i,v :

n
∑

j=1

x(v)ijvij − p(v)i ≥ 0
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The LP characterization of the problem of optimal multi-item auction among BIC mechanisms is almost
the same, except for replacing the IC constraints with the following BIC constraints for alli, v, andv′i:

∑

v−i

Pr[v−i]





n
∑

j=1

x(vi, v−i)ijvij − p(vi, v−i)i



 ≥
∑

v−i

Pr[v−i]





n
∑

j=1

x(v′i, v−i)ijvij − p(v′i, v−i)i



 .

D Price Discretization Lemma

The following price discretization lemma is attributed to Nisan (e.g., [4, 11]):

Lemma D.1. For ǫ ∈ (0, 1), let p and p′ be two bundle pricing schemes such that for any bundlei,
pi ∈ [1− ǫ, 1− ǫ+ ǫ2]p′i. Suppose the bidder buys bundlej whenp are the prices and buys bundleℓ when
p′ are the prices, thenpj ≥ (1− 2ǫ)p′ℓ.

Proof. By our assumption, we havevj − pj ≥ vℓ − pℓ andvℓ − p′ℓ ≥ vj − p′j. Summing up the two
inequalities and cancelling the common terms, we havep′j − pj ≥ p′ℓ − pℓ. Note that by our assumption
p′j −pj ≤ p′j − (1− ǫ)p′j = ǫp′j, andp′ℓ−pℓ ≥ p′ℓ− (1− ǫ+ ǫ2)p′ℓ = (ǫ− ǫ2)p′ℓ. So we havep′j ≥ (1− ǫ)p′ℓ.
Finally, pj ≥ (1− ǫ)p′j. Sopj ≥ (1− ǫ)2p′ℓ ≥ (1− 2ǫ)p′ℓ.

By Lemma D.1 we know that it suffices to consider prices that are powers of(1 + ǫ2) in order to get
(1 − 2ǫ) of the optimal revenue. Of course, we still have infinite number of prices to consider. In order to
settle this problem, we will use the extreme value theorem in[7] to conclude that for each bundle it suffices to
consider prices that are in a range whose upper and lower bounds differ by at most anO(1ǫ log(

1
ǫ )) factor (this

range may be different for different bundles). Therefore, we only need to considerO
(

log1+ǫ

(

1
ǫ log(

1
ǫ )
))

=
O(1ǫ log(

1
ǫ )) number of prices per bundle.

E Lottery Discretization Lemma

The following lottery discretization lemma is inspired by the idea in the price discretization lemma. First, let
us define some notations. We will use an-dimensional vectorq = (q1, . . . , qn) to denote a lottery whereqj
is the probability of getting itemj. A lottery menu is a collection (may or may not be finite) of lottery-price
pairs:{(q1, p1), (q2, p2), . . . }.

Lemma E.1. Supposeǫ ∈ (0, 1). Consider the optimal lottery menuL and another lottery menuL′ obtained
by rounding up probabilities of each lottery(qi, pi) ∈ L into (q′i, pi) such that for allj ∈ [n], q′ij ∈

[1 + ǫ− ǫ2, 1 + ǫ]qij. Then, the expected revenue from menuL′ is at least a(1−O(ǫ)) fraction of that from
menuL.

Proof. Suppose the type profile isv. Further, let us assume the bidder buys lottery(qj , pj) whenL is
presented and(q′ℓ, pℓ) whenL′ is presented. We have

v · qj − pj ≥ v · qℓ − pℓ (4)

v · q′ℓ − pℓ ≥ v · q′j − pj

By summing up these two inequalities and cancelling the common terms, we have

v · q′ℓ − v · qℓ ≥ v · q′j − v · qj .
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By our assumption, we further have

v · q′j − v · qj ≥ v · (1 + ǫ− ǫ2)qj − v · qj = (ǫ− ǫ2)v · qj ,

and
v · q′ℓ − v · qℓ ≤ v · (1 + ǫ)qℓ − v · qℓ = ǫv · qℓ .

Therefore, we havev · qℓ ≥ (1− ǫ)v · qj. By this inequality and (4), we have

pℓ ≥ pj + v · qℓ − v · qj ≥ pj − ǫv · qj .

Hence, if we compare the expected revenue fromL′, E[pℓ], and the expected revenue ofL, E[pj ], then
the former is worse than the latter by no more than anǫ fraction of the social welfare byL. We further note
that the optimal social welfare and the optimal revenue differ by at most a constant factor. Thus, we have
proved the lemma.

By Lemma E.1, we can round up the probabilities in each lottery to some powers of(1 + ǫ2) in order
to get 1 − O(ǫ) of the optimal revenue. There is only one catch in this argument: by rounding up the
probabilities, some of them may exceed1 and therefore become infeasible. We resolve this problem by
rounding down the probabilities as well as the prices of the resulting discretized lotteries by a factor of1− ǫ.
By doing so, we retain feasibility with the extra cost of a1−ǫ factor, but we still gets1−O(ǫ) of the optimal
revenue.

Lemma E.1 reduces the number of lotteries from uncountably infinite to countably infinite. We observe
that we can further reduce this number to finite by dropping invaluable lotteries and the negligible entries in
the valuable lotteries. Concretely, if the expected value of a lottery is at most anǫ fraction of the expected
welfare, then we can ignore this lottery because the total revenue from such lotteries is at most anO(ǫ)
fraction of the optimal. Next, suppose we have a lottery whose expected value is at most anǫ fraction of the
expected social welfare. Then, any entry smaller thanǫ2 contributes at most anO(ǫ) fraction to the expected
value of this lottery, and hence can be dropped.

F Impossibility of Truthful Reserve-Revenue Mechanism

In this section, we will show that the reserve-revenue mechanisms can not be implemented in a truthful and
individually rational manner. First of all, let us formallydefine the family of reserve-revenue mechanisms.

Definition 8. A mechanismM is a reserve-revenue mechanismif there is a reserve revenuer∗ > 0 and a
threshold social welfares∗ > 0 (presumablys∗ ≥ r∗), such thatM achieves revenue at leastr∗ whenever
the social welfare (according to the bids) is at leasts∗.

We have the following negative result.

Theorem F.1. If there are at leastk ≥ 2 bidders andn ≥ 2 items, then there are no truthful and individually
rational reserve-revenue mechanism.

Proof. It suffices to prove the theorem for the case ofk = n = 2. Assume for contradiction thatM is a
truthful and individually rational reserve-revenue mechanism with reserve revenuer∗ and threshold social
welfares∗.

Let us consider what happens whenv11 = s∗ − r∗

3 , v12 = 0, v21 = 0, v22 = s∗ − r∗

3 . We claim that in
this casep1, p2 ≤ r∗

3 .
Consider the alternative type profile in which bidder1’s values arev′11 = r∗

3 andv′12 = 0, and bidder
2’s values are still the same. Note that the social welfare forthis type profile is exactlys∗. SoM shall
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achieve revenue at leastr∗. It is obvious that the only allocation that could achieve this level of revenue in
an individually rational fashion is to give bidder1 item 1 and to give bidder2 item 2. The price for bidder
1 in this case is at mostr

∗

3 . By the taxation principle, from bidder1’s viewpoint any truthful mechanism
should look like a menu of lotteries over possible outcomes with prices that do not depend on the value of
bidder1. Moreover, bidder1 should always get one of the utility maximizing lottery. Therefore, we know
that the lottery that corresponds to getting item1 and not getting item2 with probability 1 is available to
bidder1 with price at mostr

∗

3 when bidder2 bidsv2 and it is bidder1’s utility-maximizing lottery when
her valuation isv′

1. Note that the only difference betweenv1 andv′
1 is the value for item1 increases. So we

conclude that when the type profile isv1, v2, bidder1 should purchase the same lottery with the same price.
Hence, we have proved thatp1 ≤ r∗

3 .
Similarly, we can show thatp2 ≤ r∗

3 . Now we get that the revenue achieved byM when the values are
v1 andv2 is at mostp1 + p2 ≤

2r∗

3 < r∗. Thus, we have obtained a contradiction.

Remark 1. The conditions in Theorem F.1 cannot be relaxed for that ifk = 1, then the grand-bundle-
reserve-price auction is a reserve-revenue mechanism, andif n = 1, then the standard reserve price auction
is a reserve-revenue mechanism.
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